
EUROBOT ‘99, Third European Workshop on Advanced Mobile Robots, Zürich, Switzerland, September 6-8, 1999

1

A Behavior-Based Architecture for
Teaching More than Reactive Behaviors to Mobile Robots

Michael Kasper, Gernot Fricke, Ewald von Puttkamer
University of Kaiserslautern

Department of Computer Science
Postfach 3049, D-67663 Kaiserslautern, Germany

kasper@informatik.uni-kl.de

Abstract

This contribution gives an overview of learning aspects
regarding behavior-based control architectures for
autonomous mobile robots. We propose a common,
modularized architecture, which is particularly suited for
learning-experiments. The main focus lies on "Learning
from Demonstration" in a spatial domain, which means
teaching motor-behaviors by humans or other robots.
First results applying RBF-approximation, growing neural
cell structures and probabilistic models for progress
estimation are presented.

1. Introduction

Behavior-based approaches have been established as a
main alternative to conventional robot control in recent
years [Arkin98]. Due to their modular architecture, these
approaches provide high scalability, while limiting
complexity of the individual modules. These can be
implemented (or taught) and tested independently, and
they directly support software re-use. Furthermore, they
meet real-time requirements in a dynamic environment by
creating a tight coupling between sensing and acting.

Autonomous Mobile Robots (AMR),to be truly flexible,
should be equipped with learning capabilities, so they can
adapt effectively to a dynamic and changing environment.
This is especially true for the growing field of service
robotics, where non-professionals are intended to operate
robots. In this contextProgramming by Demonstration,or
from the viewpoint of the robot: Learning from
Demonstration (LFD), is an interesting alternative to
explicit robot programming for learning new skills
(behaviors), improving existing ones, or generating new
combinations of them.

While the field of robot learning has been an
intensively studied research topic over the last decade
[Mahadevan96], within behavior-based robotics, research
on LFD concentrated mainly on learning simple stimulus-

response connections, so calledreactive behaviors. There
are only few approaches known which go beyond reactive
behaviors (e.g. [Donnart96] describing reinforcement
learning of planning rules). Hence, learning from complete
temporal sequences of perceptions (rather than from single
perceptions) is still an open question [Nehmzow95].

Within the MOBOCOB-project (mobile robot control
by concurrent behaviors) we addressed this problem and
developed a framework for investigating behavior-based
architectures with special respect to learning techniques.
The main focus of the still ongoing studies lies on
Learning from Demonstrationof temporal sequences in
the spatial domain. After teaching a few good examples by
a human teacher, the robot is able to imitate the teacher
and to generalize from the given examples.

taught trajectories

replayed trajectories

Figure 1. Reactively learned door passage

Figure 1 shows a reactively learned door passage with the
robot PHOENIXwithin a real environment. After teaching
only three examples, the robot was able to reproduce the
shown trajectories (dotted lines). If for more complex tasks
the training was not sufficient, i.e. the robot performed not
in the way it was expected to, then these cases can simply
be taughtadditionally, so the robot will master them.

2

In the next section we give a formal motivation for
behavior-based approaches. TheMOBOCOB-architecture
as a flexible, behavior-based system is introduced in
section three. A classification of behaviors based on the
formal motivation is defined in section four, followed by a
brief survey of different aspects of learning in sections
five. Section 6 describes the learning techniques used
within MOBOCOB. Finally, first experimental results are
presented together with some concluding remarks.

2. Motivating behavior based systems

While behavior-based approaches in robotics are mostly
known to be motivated from ethology and (behavioral)
psychology [Balkenius95], we will give a more formal
motivation for them.

Technically, an AMR consists beside its energy supply
of a set of sensorsS to perceive the environment, some
actuatorsA to modify the environment (or the robot's
position), and a digital control system, which is equipped
with some memoryZ. From a mathematical point of view,
mobile robot control appears to be simple, since all we
need is a functionf, mapping the sensor inputs to some
actuator outputa with regard to the internal memory state
z, as the following equation denotes:

f: (s,z) → (a,z) or (a,z') = f(s,z)

Unfortunately, the desired transformation is quite complex.
While the dimension ofa is typically small (e.g. a tuple
(v,ω) for controlling the robot’s movement by specifying
its linear and angular velocity), the dimension of the sensor
input s can be very high and - worse than that - the
dimension of the internal state space, which is needed to
perform a specific task, is not even known. In general, we
will not be able to find a closed term representation forf.
However, we can try to reduce complexity by splitting the
domain and deviding the problem into piecewise defined
sub-tasks. So we get for disjoint domainsDi:

(, ')

(,) (,)

(,) (,)

. . .

(,) (,)

a z

f s z s z D

f s z s z D

f s z s z Dn n

=

�

�

�
�

�

�
�

1 1

2 2

if is in

if is in

if is in

Transfering the decision of domain membership into each
functionfi we can write:

(a,z') = f1(s,z) ∪ f2(s,z) ∪ ... ∪ fn(s,z)

Since sensor input as well as actuator output, and the
amount of internal memory does not need to be the same
for each functionfi, we yield:

(a,z') = f1(s1,z1) ∪ f2(s2,z2) ∪ ... ∪ fn(sn,zn)

This is already a behavior-based control architecture. Each
fi denotes an individual behavior and the arbiter
corresponds to the union-operator. Since behaviors are
commonly implemented as individual processes and we do
not demand thezi to be disjoint, behaviors can share
memory, which is helpful for inter-process communication.

Before we use this formal motivation to establish a
classification of behaviors in section four, we introduce the
MOBOCOB-Architecture, to give an example of an actual
behavior-based system.

3. The MOBOCOB-architecture

MOBOCOB is implemented on the experimental
mobile robotPHOENIX which was developed within the
CAROL-project [CAROL99]. PHOENIX is a differential
drive robot running under the commercial real-time-
operating-system QNX, equipped with a laser range finder
(Sick LMS-200), ultrasonic sensors and a pan&tilt-video
system as its main sensors. Calculations are currently
performed with two onboard Pentium PC’s, connected
through a wireless Ethernet to the research group’s LAN.

The MOBOCOB-Architecture is intended to be an
experimental platform, utilizing a flexible, modular
concept for implementing behaviors, sensors, actors and
the arbitration unit. All modules share a common interface
for access, hence adding new modules such as behaviors or
sensors is simple. Figure 2 depicts the structure.

Behavior 1
c

c
Behavior 2

c
Behavior n

A
rb

itr
at

io
n

U
ni

t

A
ct

ua
to

r
C

on
tro

l

Global Memory / States

P
hy

si
ca

lS
en

so
rs

(e
xt

er
na

l
&

in
te

rn
al

)

V
irt

ua
lS

en
so

rs

Environment

Figure 2. MOBOCOB-Architecture
(primary data-flow from left to right)

Physical sensorsobserve the environment (using external
sensors) and read internal sensors, such as odometers. In
order to reduce the dimension of sensor input, it is
reasonable to do some sensor data preprocessing such as

3

filtering or feature detection within video- or range-
images. This is done byvirtual sensorswhich process the
output of one or more physical or virtual sensors (compare
[Henderson84]). In this way, a higher level of abstraction
of perceptions can be achieved, while at the same time
reducing the amount of data transferred to the behaviors.
Virtual sensors are typically used for sensor fusion, feature
detection, object tracking or adding history to physical
sensors. They may also be used to watch the output of
other modules, such as behaviors or the arbitration unit.

In MOBOCOB, a library has been realized that
provides access to sensors and actuators, defining standard
data-manipulation and -evaluation functions, such as
weighted average and similarity [Riemann99]. This way,
(behavior) modules can be implemented independently
from the actual sensor or actuator type, i.e. different sensor
or actuator sets may be used without recoding. This is
especially true for learning modules and taught behaviors,
since these normally need no direct access to data
structures of sensors or actuators. Instead, the learning
algorithms rely exclusively on these library functions.

Behaviors are realized as parallel QNX-processes,
exchanging data through the same communication
channels like the other modules. The reader should recall
that in section two, we have transferred the decision of
domain membership to the individual behaviors, thus each
fi denotes its competence for a specific situation through a
competence-valuec to the arbitration unit. For our further
formal considerations, we will omit this value, since it can
be seen either as part of the actuator- or state-output of a
behavior.

The arbiter observes the output commands produced
by individual behaviors and uses the competence-values to
generate an overall command set, which is passed to the
actuator control unit. Since we do not want to restrict the
arbiter to a specific arbitration scheme, there can be
competitive behavior selection as well as cooperative
behavior fusion, or any combination between. The arbiter
is hierarchically organized and also responsible for some
kind of behavior sequencing (compare assemblies or
engagement-modules in [Balkenius95]). In this context, the
arbiter can trigger behaviors or can halt and restart the
associated processes.

4. Classification of behaviors

Recall the motivation from section two. Depending on the
domain and co-domain of the describing functions, we
distinguish several types of behaviors:

• purely reactive motor behaviors,
• blind motor behaviors,
• state dependent motor behaviors and
• hidden, most likely deliberative, behaviors.

Hidden behaviorsdo not control actuators directly, hence
they can be characterized asf: (s,z) → z. Usually,
processing at this level does not only take place in a sub-
symbolic manner, but mainly on a symbolic level for
planning and reasoning about the environment. Hidden
behaviors typically modify the robot’s set of targets or its
„motivational“ state [Balkenius95]. Obviously they are no
good candidates forLearning from Demonstration, since
there is no way to observe these behaviors from a teacher.
However, learning can be applied using unsupervised
methods like reinforcement learning (see [Donnart96]).

Purelyreactive (reflexive) behaviorson the other hand,
do not depend on state information at all. They directly
map sensor input to actuator output as denoted by the
formula f: s → (a,z). The z component may be used for
data transfer to other modules. Although reactive behaviors
are easy to handle, they solve a simple class of problems
only. For example, when no sensor information is
available, reactive behaviors are not able to initiate a
sequence of actions. This leads to the class ofblind
behaviors. They do not rely on any (external) sensor
information1 and are described byf: z → (a,z).

Combining the classes of reactive and blind motor
behaviors, we getstate-dependent motor behaviors, which
require some memory to accomplish a task, and which
were basis for the motivational introduction from above:
f: (s,z) → (a,z).

In the following we will focus on reactive as well as
history-dependent behaviors: a subset of state-dependent
behaviors, which base on temporal sequences and hence
can be represented through cycle-free state graphs.

5. Aspects of learning

Before discussing the general impacts of the above
classification onLFD, we give a short introduction to the
topic. Considering a behavior-based system there are many
opportunities for machine learning. Learning techniques
can be applied to any components such as behaviors,
arbitration, sensor data preprocessing or actuator control.
For some tasks, unsupervised learning is promising, for
others supervised learning is adequate.

We concentrate onLFD as a special kind of supervised
learning for behaviors. This technique could also be used
for other modules as well, but especially for (motor)
behaviors it seems to be straight forward and very
promising.

1
Reading internal sensors can be interpreted as accessing a part of

the internal statez. On the other hand, one might see the observation of
internal statesz as „sensing“ as well, but states which are directly
influenced by the observing behavior itself, should be excluded. We will
retain the differentiation between (external) sensor data and internal
states to achieve a problem-oriented classification of behaviors.

4

The basic idea is, instead of explicitly programming a
behavior, a (human) teacher simply demonstrates a task to
the robot by specifying, which sensors are relevant and by
driving the robot’s actuators a few times. This way, it is
easy to teach or adopt a behavior not only for
professionals, but also for laymen to new tasks, other
environments or different robot hardware (sensors and
actuators). ThusLFD can be a basis for implementing new
behaviors which could be improved later, using
unsupervised learning techniques on the robot.

We will see that there is no difference, whether
teaching is conducted by a human, another robot or simply
by another behavior on the same robot. The latter is called
behavior cloningand is interesting for several reasons.
One is to clone functionality using different sensors as
input, which could be cheaper, faster or more reliable.
Another is to copy a conventionally programmed behavior
which can be extended (re-trained) by further supervised
learning.

The introduced classification of behaviors leads
directly to a classification of solvable problems within the
spatial domain. Blind behaviors are able to playback action
sequences independently from any sensor data. This is
necessary, for instance, when sensor feedback is too slow
or not available at all. From the robot's point of view,
learning blind behaviors is simple, as long as they depend
only on their own internal states (e.g. a time basis), rather
than internal stateszi of other behaviors. However, since
blind behaviors do not get any external feedback they are
restricted to short, non-critical action sequences.

Teaching reactive behaviors to mobile robots is state of
the art and has been investigated by many researchers in
the last years using various types of sensors [Arkin98],
[Martin95]. Teachable tasks includewall following,
obstacle avoidance, box pushing, docking, phototaxisand
so on [Nehmzow95]. However, since reactive behaviors
just learn simple stimuli-response connections, they are not
suited for any history- or state-dependent tasks.

A behavior is calledstate-dependent, whenever a
bijective mapping between sensors and actuators is not
sufficient to describe the task. For instance, passing a door
with a longish robot can not be solved using purely
reactive behaviors, if the used sensor covers only a limited
area in front of the robot (Figure 3.a). Because of the
temporal loss of information about the door position, a
reactive behavior would get stuck. Also driving into a
parking-box with a vehicle using an Ackerman-Steering, is
more than a reactive task, since there exist identical
external sensor perceptions, corresponding to completely
different actions (reverse direction, see Figure 3.b).

Originally reactive tasks that do not change the
environment and have to be repeated a fixed number of
times are also state-dependent, because the robot can not
conclude from the sensor data, how many repetitions have

already been completed. Figure 3.c illustrates this by the
example of driving around a totem pole for three times.

Some tasks that normally do not have a reactive
solution may, however, be solved reactively, if the needed
memory is „hidden“ in some other components. For
example, the door-passage problem could be solved
reactively, if instead of the limited physical sensor a virtual
360°-sensor, based on a grid map, is used. The totem pole
problem could be solved using an accumulative angular
sensor, which takes the place of a counter.

However, such sensors would be task specific. For
different problems, different sets of „history sensors“
would have to be implemented. And as they do not provide
a general history model, one can easily think of problems,
where their history representation is not sufficient.

A more universal concept is to use sequences of
reactive behaviors [Balkenius95]. They correspond to
history-dependent behaviorsintroduced in section four,
which are sufficient to solve a large set of robot navigation
tasks, such as the ones mentioned above.

view angle of
laser range finder

desired path

starting position

a) Door passage

identical sensor situations
with contradicting actions

starting position

b) Parking box

3 times

c) Totem-pole

Figure 3. Non-reactive robot tasks

5

There are no approaches known for applyingLFD to
history-dependent behaviors in mobile robotics, hence
MOBOCOBwill focus this topic. From the viewpoint of
LFD, it is desirable that already individual behaviors have
some sequencing capabilities, so that teaching involves a
single behavior only, rather than the behavior-arbiter
complex.

6. Learning within MOBOCOB

Within the MOBOCOB-project, a generic concept for
learning-experiments has been developed. The learning
module can observe any two communication ports, e.g.
(virtual) sensor and actuator ports, and tries to find a
mapping between them. Since most modules within
MOBOCOB share the same communication concept,
learning is not only restricted to behaviors, but can also be
applied to virtual sensors or actuators.

Observing an existing behavior, the learner can be used
for behavior cloning or off-line cloning (cloning an
existing behavior with simulated sensor input, so different
learning-algorithms and parameters can be compared under
the same conditions).

For LFD, the learning module observes the output of a
behavior, controlled by the teacher. In our case, this is a
joystick-module driving the motors of the robot via a
(v,ω)-interface. The competence-values for a behavior can
be taught through a force-sensor applied to a button of the
joystick. The teacher specifies the behavior which should
be taught, as well as the learning parameters (reactive/
state-dependent, learning-rate, sensors to be used, etc.).
Any set of (virtual) sensors can be grouped, instantiating a
new virtual sensor. The learning algorithm does not need
to know any internals of the data-structures it learns from.
It abstracts from the data, using the similarity- and
average-functions, encapsulated within the sensor/actuator-
libraries. After teaching a couple of good examples, the
robot is able to imitate the teacher and to generalize from
the given examples.

6.1 Learning reactive behaviors

What makes a task reactive, is that it does not use any state
information to generate the output. Hence it can be
described asa = f(s). We are now looking for an adequate
approximation forf. A common mathematical technique is
to represent an unknown function by a set of support
points, so the function can be regarded as inter- or
extrapolation between these points.

We decided to useRadial Base Function (RBF)
approximation with growing neural cell structures to
representf (and thus the behavior), since this technique can
cope with non-linearities and is suited for our extension to

history-dependent behaviors. While learning, the robot
collects a set of stimuli-response pairs (s,a) describing the
taught examples. These pairs are used to derive support
points represented by neurons. Each neuron marks the
center of a Radial Base Functionrbfi, used to interpolate
between the support points.2

6.1.1 RBF-approximation

RBFs are radial symmetric, i.e. their value depends only on
the distance to the center. The value of the base function
rbfi(x) can be interpreted as how strong each support point
spi = (si,ai) influences the output value off(x). In the center,
it will be very representative and in greater distance, it will
not be representative at all.

We have chosen to use the Gauss-Function as base
function with its co-domain scaled to [0,1] together with
compromising RBF-approximation defined as:

approx x w average rbf x a
rbf x

rbf x
ai i

i

j
j

i
i

() _ ((),)
()

()
= =

�
⋅�

It is noteworthy that allrbfi are different functions of the
same type: They have different centers and may also have
a different half-widthσ, defined as the distance (from the
center) whererbfi falls under 0.5. In areas in which the
approximated function changes frequently, more support
points will be needed than in other „smooth“ areas. By
appropriately settingσ, one can assure that the areas of
influence of adjacentrbfi do not overlap too much.

Despite the fact that RBF-approximation is defined on
distance measurements, the implemented sensor/actuator-
libraries define similarity-measurements exclusively, since
it can not be guaranteed that there will always be an
euclidian metric defined. Hence instead of distance
measurements an estimation based on similarity is used:

distance x y
similarity x y

(,)
(,)

= −
1

1

Similarity functions return a value of one for identical data
and zero for absolutely different data (however this may be
defined).

6.1.2 Growing cell structures

Support points should be well chosen. The aim is to
retrieve an approximation of high accuracy which has a
compact representation. The implemented algorithm is

2
The current implementation does not use extrapolation methods

yet, since extrapolation is calculation intensive and well established for
euclidian domains only. Until suited extrapolation techniques are
developed, the postulated „good“ teacher has to take care that important
„extreme situations“ will be taught to the robot.

6

inspired by connectionist approaches known asgrowing
neural gas algorithms[Fritzke92], [Zimmer95].

Adding new support points (neurons) is only necessary
when the actual teach-int = (s,a) was „unexpected“, i.e. the
outputo of the current approximation differs significantly
from a. This can be expressed assim(approx(s),a) >
ActDiffBound whereActDiffBoundis a parameter close to
one (e.g. 0.95 as used in our experiments).

Furthermore, to keep the number of support points
small, a new neuron is inserted only if its sensor reading
differs significantly from all known sensor readings, i.e. if
sim(si,s) > SensDiffBoundfor all neuronsspi. Otherwise,
the closest neuron is just modified to better represent the
current actiona by adapting its position to the new tech-in.
This is done by setting the (new) valuesspi’ = (si’,ai’) to
the weighted average of the oldspi (weightedw) and the
actual teach-int (weighted 1-w)3:

()sp s w w s a w w ai i i' (()), (())= ⋅ − + ⋅ ⋅ − + ⋅1 1

Figure 4 explains what this means for the one-dimensional
case. For continuos functions, sensible chosen learning
parameters and statistically distributed measurement
errors, it can be shown that the approximation-error
converges towards zero.

a function to be approximated

s

neurons

adaption of neuron

range in which neuron
can be modified

new teach-in

Figure 4. Adapting neurons to new teach-in

An example of a reactively learned door passage, was
already given in the introduction (Figure 1), which lead to
19 neurons, representing the task. Learning was based on
the front-mounted laser range finder with distance readings
grouped to 12 sectors.

6.2 Learning history-dependent behaviors

MOBOCOBis able to learnhistory-dependent behaviors.
Basically we use the same representation as for reactive
tasks, but instead of merging all teach-ins (s,a) into one
single representation, the learner collects temporal
sequences (chains) of (s,a)-pairs. This may lead to several

3
The learning ratew indicates how much a previous representation

can be modified. With a constantw, early teach-ins lose weight through
each later modification, allowing actions to be overwritten or retrained.
On the other hand, the same relevance for every teach-in can be achieved
by setting the weight of thek-th teach-inwk to the reciprocal ofk.

chains describing a single task (Figure 5). Each node
represents implicitly the complete history of perceptions
and actions up to this position.

trained chains,
describing the task

door

Figure 5. (s,a)-sequences for passing a door

When applying a learned history-dependent behavior, the
robot has to calculate which „position“ (which state of
progress) within each chain represents the current situation
best. Each node of a chain contains an actuator command.
Thus, depending on the estimated progress we have to
interpolate between commands when executing a taught
behavior. Furthermore, for multiple chains even inter-
polation between these chains is necessary.

For behaviors, defined by a single chain, progress is
totally (temporally) ordered. Regarding multiple chains,
each chain represents an individual training example.
These may form distinct solutions for the same task. It
might be necessary to decide between alternatives, e.g.
when teaching „obstacle avoidance“ and first evading to
the left, later to the right side a few times (Figure 6). In this
case, progress is not comparable between the alternatives
(the upper and lower trail), hence progress is not totally
ordered. Multiple chains, for which progress is comparable
(and totally ordered) are calledvariantsof each other.

two groups forming alternatives of each other

target point

Figure 6. Taught sequences, defining an
obstacle avoidance task

7

According to the above, we have to face two major
problems: a) Identifying sets of (sub-)sequences forming
variants (so calledgroups) and b) evaluating the totally
ordered progress within these variants. There are several
ways to identify variants or alternatives within a set of
chains, we will not discuss here. Instead we focus on the
second matter and present possible solutions.

The most simple case of a totally ordered progress is
found in single-chain behaviors, the following sub-section
deals with. Thereafter the subject is generalized to groups
and multiple chains containing alternatives, which are the
most general case of history-dependent behaviors.

6.2.1 Single-chain behaviors

Due to their ability to cope with dynamic environments
and uncertainty, probabilistic approaches have been
established for solving various problems concerning
mobile robotics such as self-localization [Burgard97] or
speech recognition [Bonafonte93]. They also seem to be
suited for progress estimation within behavior chains.

In general, progress can be regarded as a probability
distribution over a chain. This continuos distribution can
be approximated by a discrete one over all nodes. It’s
values represent the robot’s belief of being in (or close to)
a specific state or node. This way, the nodes represent not
only support points for the actuator function but also for
the probability distribution. Peaks of the distribution
characterizehypothesesof possible positions. At the
beginning, the probabilities will be evenly distributed or
the ones at the beginning of a chain may be slightly
emphasized. While executing a behavior, the distribution is
periodically updated by two rules: a)shifting (transposing)
the probabilities along the chain and b)synchronizingto
the environment. Weighting between synchronizing and
transposing is an important parameter. If there is no
synchronizing at all, we are restricted to blind behaviors.

Synchronizing is performed by emphasizing the
probability of those nodes, for which the current sensor
reading is similar to the expected one (Figure 8.a).
Defining a general model for transposing is more difficult.
Two subsequent support points may be located far apart
from each other, while the maximum of a hypothesis lies in
the middle between them. The hypothesis’ probability is
distributed to the adjacent support points. Uncertainty
about the exact position of the maximum uses the same
representation, hence both cases are indistinguishable.

To guarantee a sufficient approximation of the prob-
ability distribution, we have to limit the maximum distance
between the nodes (compare Shannon’s Theorem). A
trade-off between accuracy and compactness of represen-
tation has to be made to meet real-time demands. Loss of
accuracy is acceptable as long as synchronizing is
sufficient to compensate the cumulating error.

rel. movement

projected distances

Figure 7. Projecting the relative movement to
the trajectory between two support points

For the spatial domain, we propose the use of a geometric
heuristic for transposing, based on dead-reckoning and the
relative positions of the nodes. We can project the robots
relative movement to the trajectory between two
subsequent support points as shown in Figure 7.

The length of the projected distance results in the
relative advancementadvrel,i,k between each pair of support
points spi and spi+k. By properly selectingk for eachspi,
advrel,i,k can be limited to the range of [0..1]. Fork = 1 the
probability valuepi of a nodespi can be updated by the
simple rule

pi’ = advrel,i-1 · pi-1 + (1-advrel,i) · pi

This corresponds to only linear interpolation of the
probability distribution between the support points, and
therefore transposing leads to a loss of accuracy resulting
in blurring the peaks (hypotheses) of a distribution. Figure
8.b shows this effect, which is acceptable as long as it can
be compensated by synchronizing (see above).

previous hypothesis
new hypothesis

expected perception
similar to sensor reading

a)

previous hypothesis

new hypothesis

positions of neurons
b)

robot's movement

Figure 8. Updating hypotheses by
a) synchronizing and b) shifting

6.2.2 Multiple-chain behaviors

Recall the example „obstacle avoidance“ (Figure 6). When
interpolating between different variants which form a
group, it is reasonable to interpolate only between those
nodes that represent (almost) equivalent progress. Once the
nodes representing the progress have been selected, action
evaluation is reactive (by interpolating between these

8

nodes), since the state of progress is represented by the
selection. Advancing within the group will select different
sets of nodes and therefore different reactive control
functions. Hence, a group can be seen as defining a
sequence of reactive behaviors. The behavior changes
whenever other nodes represent the state of progress better.

The methods of evaluating progress for single-chain
behaviors can therefore be transferred to progress
evaluation for groups, as progress within a group is also
totally ordered. Figure 9 sketches the combination of
several alternative groups to a single history-dependent
behavior.

different reactive behaviours

Figure 9. Sequences of reactive behaviors
forming a history-dependent behavior.

Conclusion

We have motivated a common, modularized behavior-
based architecture, which is particularly suited for
learning-experiments. The formal classification of
behaviors showed opportunities for learning blind, reactive
and history-dependent tasks. In each case, teaching can be
conducted by a human, another robot or simply by another
behavior on the same robot (online or offline cloning). The
learning algorithm itself is independent of the employed
sensors by encapsulating relevant functions within
sensor/actuator-libraries.

First experiments for learning reactive and history-
dependent tasks have been carried out within the
MOBOCOB-Project. While learning reactive behaviors
using RBF-approximation with growing neural cell
structures is very satisfactory, there are still open questions
concerning history-dependent tasks. To cope with small
relative progress, unevenly distributed nodes, or unknown
starting positions, the approach has to be further
optimized.

Chances to overcome these problems might be the use
of better approximations for probability distributions (not
just linear) or the use of different sets of support points for
representing actuator commands and probability
distributions, so that the support points of a distribution
could be transposed rather than the distribution itself.
However, using a probabilistic approach seems to be an
appropriate way to cope with uncertainty of progress

estimation. Further works will have to improve the
obtained results and compare them to traditional
approaches.

References

[Arkin98] R. C. Arkin: Behaviour-based Robotics, MIT Press,
Cambridge Massachusetts; 1998

[Balkenius95] C. Balkenius:Natural Intelligence in Artificial
Creatures, Lund University Cognitive Studies 37, 1995

[Bonafonte93] A. Bonafonte, X. Ros, J.B.Marino:Explicit
Modeling of Duration in HMM in R. Ayuso: Speech
Recognition: New Advances and Trends,proceedings of the
NATO Advanced Study Institute on New Advances and
Trends in Speech Recognition and Coding, held in Bubión,
Granada, Spain, June 28 - July 10, 1993

[Burgard97] W. Burgard, D. Fox, S Thrun:Active Mobile
Robot Localization by Entropy Minimization,2nd Euromicro
Workshop on Advanced Mobile Robots (EUROBOT '97)
Brescia, Italy; October 22-24, 1997

[CAROL99] Documentation of the CAROL Project,
Department of Computer Science, University of
Kaiserslautern, 1999; http://ag-vp-www.informatik.uni-kl.de

[Donnart96] J. Donnart, J. Meyer:Learning Reactive and
Planning Rules in a Motivationally Autonomous Animatin
IEEE Transactions on Systems, Man and Cybernetics,
Special Issue on Learning Autonomous Robots, 1996

[Fricke99] G. Fricke: Mobile Robot Teaching within a
Behavioural Architecture,Diploma Thesis, Department of
Computer Science, University of Kaiserslautern, 1999

[Fritzke92] B. Fritzke: Wachsende Zellstrukturen - Ein selbs-
torganisierendes Netzwerkmodell- Arbeitsberichte des
Instituts für Mathematische Maschinen und Daten-
verarbeitung (Informatik), Friedrich Alexander Universität
Erlangen, Nürnberg 1992

[Henderson84] T. Henderson, E. Shilcrat,Logical Sensor
Systems, Journal of Robotic Systems 1(2), pp. 169-193, 1984

[Mahadevan96] S. Mahadevan:Machine Learning for
Robots: A Comparison of Different Paradigms, IROS
Workshop Towards Real Autonomy, Osaka, Japan, 1996

[Martin95] P. Martin and U. Nehmzow:'Programming' By
Teaching: Neural Network Control In The Manchester
Mobile Robot published at Intern. Conf. Intelligent
Autonomous Vehicles 1995, Helsinki.

[Nehmzow95] U. Nehmzow:Applications of Robot Training:
Clearing, Cleaning, Surveillance, International Workshop on
Advanced Robotics and Intelligent Machines, Salford, UK,
5.-6.4.1995

[Riemann99] F. Riemann:Entwicklung eines generischen
Sensorkonzeptes für einen Autonomen Mobilen Roboter,
Diploma Thesis, Department of Computer Science,
University of Kaiserslautern, 1999

[Zimmer95] U. R. Zimmer:Adaptive Approaches to Basic
Mobile Robot Tasks, Ph.D. Thesis, Department of Computer
Science, University of Kaiserslautern, 1995

