
1 Introduction

Robustness of mobile robot self-localization in dynamic environments is primarily deter-
mined by the navigation algorithm's capabilities to recover from erroneous position esti-
mates. With respect to these abilities, self-localization techniques can be divided into
tracked and global localization techniques. Tracked self-localization (e.g. [13]) depends
on an initial position information and can compensate limited position errors, only. Espe-
cially in dynamic environments, these error limitations usually can't be guaranteed and re-
covery from such position errors is rare.

Global self-localization, by observing a multitude of different position hypotheses,
usually doesn't require initial position information and is generally able to recover from
arbitrary position errors - as long as the target area is not completely symmetrical and uni-
que environmental features can be detected in order to resolve ambiguities.

Closely connected to the question of how to design global localization algorithms for a
certain sensor domain is the preferred environment representation (world model), which
itself is often determined by the intended robot application. Due to their easy implementa-
tion and efficient handling, metric representations are an obvious choice when ranging de-
vices like laserscanners or ultrasonic sensors are used. State-of-the-art approaches for glo-
bal self-localization in the laserscanner domain for metric world models are [2, 11].

Topological maps, which represent the environment as a network of distinctive places
and connecting pathways seem to be more adequate when non-metric information has to
be integrated into the world model [3, 5]. In combination with probabilistic techniques
they are well suited to handle environmental ambiguities which are common in service ro-
bot workspaces, e.g. office buildings [4, 14].

Against this background our CAROL-project (Camera Based Adaptive Robot Naviga-
tion and Learning) serves as a framework for the development of global self-localization
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techniques and navigation architectures based on topological maps. In order to perform
camera-based navigation, we have implemented a modified version of the neural scene
classifier described in [5]. Another algorithm detects and decodes bar code labels from
camera images [1] as a machine equivalent to the human ability to read door plates and
road signs. Besides the camera, other sources of localization information are 180° laser
scans provided by a SICK LMS-200, which are used to identify most likely matches in a
set of reference scans. The latter is subject of this paper.

In the past various scan matching techniques have been proposed for different kinds of
applications. These approaches can be separated into two main categories:

Feature based matching techniques either align extracted geometric primitives or raw
range readings with an existing structural description of the environment. These matching
techniques represent an efficient, reliable and popular class of self-localization methods
for polygonal environments [6, 7]. However, feature based techniques suffer from the
poor assortment of practically usable geometric primitives, thus mainly line segments and
derived landmarks, e. g. corners and openings are used.

In recent years a second category of raw data matching techniques without explicit
geometric interpretation have been developed. Lu and Milios [8] present an approach for
the matching of nearby scans, suitable for a tracked robot pose estimation, which takes
the correctness of the last position hypothesis for granted. Weiss et. al. [9] suggest a scan
correlation algorithm which is more robust against translatorial and rotational differences
than [8] but primarily designed for polygonal environments. Crowley, Wallner et. al. de-
veloped a matching technique based on principal component analysis suitable for global
self-localization [2]. However, this method requires extensive training sets from known
positions.

The Anchor Point Relation matching (APR) presented in this paper supports global lo-
calization by searching matches for an actual laser scan in a given set of reference scans in
realtime. The algorithm's output is a certain number of weighted hypotheses, which makes
APR especially attractive for probabilistic navigation techniques. Although the reference
scan concept resembles topological approaches in so far that a certain part of the area is
decribed by a representable scan, it is also applicable in navigation schemes based on met-
ric models, as will be shown in the experimental results.

Since there is no explicit geometrical interpretation by extraction of primitives, APR
realizes a hybrid scan matching technique. This prevents the typical information loss asso-
ciated with the concentration on line segments, only. Instead, relations between character-
istic coordinates of object properties (anchor points) are used as heuristics to choose like-
ly candidates out of a set of reference scans to avoid a computationally expensive corre-
spondence search in the whole set.

The rest of the paper is organized as follows: section 2 shortly addresses the angle
function as an important tool in different steps of the algorithm, while section 3 treats the
extraction of anchor points. The matching technique itself is presented in section 4 while
the final verification phase is discussed in section 5. Section 6 offers experimental results.

2 Angle Function

For the purpose of scan analysis it is important to know the distribution of range readings
relative to each other rather than relative to the scanner's position. Consequently, Hinkel
and Knieriemen [10] propose an analysis method which computes angles of lines (modulo
180°) between succeeding range readings with respect to the scan coordinate system (an-
gle function). In a second step the discrete angle frequency distribution (angle histo-



gram) of this function is used to determine the robot's orientation relative to the surround-
ing walls.

However, the angle function itself is a very useful tool to determine geometric proper-
ties of surfaces. Fig. 1 shows a laser scan and the corresponding angle function. The
curved object part appears as a linear ramp while the planar surfaces are represented as
sections of constant angles. As a compromise between information yield and noise reduc-
tion Hinkel and Knieriemen recommend a constant offset of several degrees between two
range readings instead of taking immediate neighbours to calculate the angles. In the cur-
rent APR implementation, instead, the angle offsets are chosen individually depending on
the measured distances in order to achieve similar metric distances for the point pairs rath-
er than a constant angle offset. This improves information yield while minimizing noise
effects at the same time.

3 Anchor Point Extraction

The basic idea of the APR algorithm is the matching of two sets of characteristic 2D coor-
dinates which are reproducable object feature positions (anchor points). Currently, three
types of anchor points are used: jump edge, angle and virtual edge anchor points.

The observation that large objects tend to be the invariants of an environment is trivial
but basic for place recognition. For APR this is taken into account by executing a segmen-
tation step in order to find scan parts belonging to large surfaces, first. Consequently,
those kinds of anchor points which represent the coordinates of object surface features
(jump edge anchors and angle anchors, see below) are extracted for such segments, only.

Jump Edge Anchors. The easiest detectable anchor type corresponds to edges between
two enclosing vertical surfaces when only one of the enclosing object faces is visible from
the scanner's position. A jump edge is under these circumstances detectable as a jump in
the range signal from near to far at the outer margin of a closed surface. In Fig. 1 a jump
edge anchor has been extracted at the righthand part of the large object. To avoid misinter-
preting visibility rims of round objects as jump edges, the offset between scanning angle
and surface orientation angle of the segment margin is checked. At the visibility rim (Fig.
1) of the lefthand curved part the angle between the scanning ray and the surface orienta-
tion - provided by the angle function - is too small. Thus, no jump edge is extracted for
this segment margin.
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Fig. 1: LMS scan and resulting angle function; extracted anchor points (APs) are marked by triangles



Angle Anchors. When both enclosing object surfaces are visible, vertical edges appear
as concurrent occurence of a jump in the range signal's and a non-zero value in the angle
function's 1st derivative (inner anchor points of complex object, Fig. 1). Please note, that
convex angle anchors may transform into jump edge anchors and vice versa when seen
from another perspective. Like jump edge anchors, angle anchors are extracted only if
they are part of a connected segment.

Virtual Edge Anchors. In [9,10] the position of the angle histogram's maximum peak
is interpreted as angle difference between the robot's orientation and the main angle of the
surrounding walls. To determine the robot's translation with respect to these walls, x- and
y-histograms are computed, i.e. discrete frequency analyses of the scan-point distribu-
tions in the direction of the walls' main and orthogonal angle, respectively. In the current
APR implementation the peak positions of x- and y-histograms are used to create com-
bined 2D positions (Fig. 2). These virtual edge anchors realize very stable and thus high-
ly recognizable anchor points in orthogonal environments. Virtual edge anchors due to
their statistic nature belong to large objects and don't require segmentation information
like jump edge and angle anchors. As pointed out in [12] the concept of x- and y-histo-
grams can be extended to arbitrary, non-orthogonal main angles by providing one point-
distribution histogram per angle histogram peak.

4 Matching

Finding matches of actual laser scans in a set of reference scans without additional as-
sumptions about current position and orientation is a computationally expensive opera-
tion. The basic idea of the APR algorithm is to represent both, reference scans and actual
scan by fully connected graphs constructed from their sets of anchor points. Usually, two
scans of the same scenery will result in two disjoint sets of anchor points A and A' due to
four main sources of error: 

• occlusion of significant environment parts by objects which were not present at crea-
tion time of the corresponding reference scan (dynamic environments),

• fluctuations in position extraction of anchor points due to measurement errors and al-
iasing effects,

• different outcome of the segmentation step which affects jump edge and angle an-
chor point extraction,

• only partial overlap of the two corresponding 180°-scans due to different scan posi-
tions and orientations.
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The matching problem is thus reduced to the identification of maximum matching sub-
graphs in the set of all reference graphs.

4.1 Preselection - Candidate Search

In order to avoid a full search in the reference set, APR performs a preselection of likely
candidates using the relationship database. This database is constructed from all edges of
all reference graphs. Each edge ei=(pa, pb, di) of a reference graph Gn is represented in the
database as a vector v=(n, ei). Both anchor points pa and pb are nodes in Gn and di is the
eucledian distance between node pa and pb. The database is implemented as a Hash table,
sorted according to distances di.

Preselection of probable matching candidates in the reference set for a new graph G' is
done by a search for distances di in the relationship database for all ei ∈ G'. For each edge
entry v=(n, ej) in the database which corresponds in length, a counter for  Gn is increment-
ed. After a completed search, a quality measure qm is computed for each reference graph
Gm:

where nm is the counted number of corresponding edges for G' and Gm. r and s are the to-
tal numbers of edges in G' and Gm, respectively. Only reference scans with a high qm-val-
ue are chosen for further processing.

The database search thus tries to identify reference graphs with a similar spatial anchor
point configuration by statistic means. In office environments there will always be a high
number of  similar distances between single pairs of APs (due to standardized furniture,
identical door sizes, etc.). But only the same or mirror-symmetrical configuration of ob-
jects will produce a similar, fully connected graph and thus a high number of correspond-
ing edge lengths. The quality measure's construction also prevents reference graphs with a
high number of edges of becoming 'more attractive' only due to a resulting higher number
of accidental correspondences.

4.2 Alignment

The alignment step aims at finding a coordinate transformation that aligns one anchor po-
int graph G1 (e.g. a reference graph) with another graph G2 (e.g. the AP-graph resulting
from the actual laser scan). This not only provides the possibility to check the validity of
the match by some means of correlation (see section 5); in the case of a correct match it
directly delivers the actual robot position in the reference graph's local coordinate system.

Each length correspondence of edges (e1i, e2j) in G1 and G2 provides two hypotheses
how to align the two graphs. For e1i=(pa, pb, d) and e2j=(pv, pw, d) the combinations (pa,
pv) and (pb, pw) might represent the same APs, or (pa, pw) and (pb, pv), or none of both if
the correspondence is just accidental.

The alignment decision is computed statistically by creating a n x m node correspon-
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dence matrix (Fig. 3), where n and m are the total numbers of APs in G1 and G2, respecti-
vely. For each of the possible AP combinations (pi, pj) for each of the edge corresponden-
ces of the two graphs, the corresponding matrix element is incremented by 1.

In the example of Fig. 3, G2 is a true subgraph of G1, but with a different AP enumera-
tion. In G1 the edges (1, 2) and (2, 4) have the same length (i.e. the same length than (2, 3)
in G2), all other edges have different lengths. The resulting correspondence matrix achie-
ves a maximum in line 2, column 3, which identifies the pair AP 2 of G1 and AP 3 of G2
as a likely node correspondence.

APR now uses the edge correspondences which have contributed to this maximum ent-
ry to compute an equal number of geometric alignment hypotheses. All correct contribu-
tions to that peak will produce similar hypotheses, false contributions are eliminated by a
clustering step. The remaining transformations are unified by computing the center of gra-
vity, which provides a highly precise alignment for a significant number of recognized
APs.

As can be seen in the example of Fig. 3, the 'noise-to-signal-distance' in the correspon-
dence matrix is not satisfactory for small total numbers of APs or poor overlap of G1 and
G2. In order to eliminate coincidental edge correspondences, like (2, 4) in G1 with (2, 3)
in G2, APR determines the most likely rotational difference between G1 and G2 from a
matching angle histogram. This histogram results from a frequency analysis of the angle
differences between all pairs of corresponding edges in G1 and G2. All edge correspon-
dences not belonging to the histogram peak are ruled out from further consideration in the
correspondence matrix. In Fig. 3, the false edge correspondence of (2, 4) in G1 with (2, 3)
in G2 will be eliminated because three correct edge correspondences indicate a rotational
difference of 30°, whereas the false edge pair suggests an angle of  -45° (modulo 180°).
Fig 4 shows two real scans of the same scenery from different position and orientation and
the resulting matching angle histogram.

Although the matrix technique is not recommendable for high node numbers, it is very
efficient and, by its statistical nature, highly robust against AP extraction errors for typical
graph sizes in the APR application scenario.

5 Evaluation

APR performs the alignment step of the actual scan for a selected number of reference
scans with the highest qm-values. The evaluation step serves two purposes: finding the
most likely match in the resulting set of hypotheses and providing a good quality measure
em for possible use in probabilistic self-localization architectures.
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Fig. 4:  Scans and AP graphs from different position and orientation, resulting matching angle histogram



Using 180° laser scans, only, bears the problem of different perspectives: generally,
scan A contains environmental information which scan B doesn't, and vice versa. Additio-
nally, range data aquired from different positions, but representing the same part of the en-
vironment, can't be correlated directly.

This problem is solved by creating synthetic scans: firstly, the relative translation of
scans A and B is checked to determine which scan contains the other scan's sensing posi-
tion and consequently has a better 'overview'. From this range data an artificial scan for
the other scan's (front scan) position and orientation is computed. This synthetic range
image can be directly correlated with the front scan.

Experimental results have shown that linear numerical comparison functions like the
empirical correlation coefficient are too tolerant against range differences, so a simple
threshold operator is applied by APR. The evaluation value em is then defined as the per-
centage of range readings in front and synthetic scan which differ by not more than a cer-
tain tolerance, with respect to the scan size.

6 Experimental Results & Conclusions

Fig. 5 shows a set of 30 reference scans of our lab environment, fitted into a global coor-
dinate system. A series of 1405 scans recorded during a second, independent test run was
matched with this reference set.  The SICK scanner is mounted at a height of approx. 25
cm, thus the algorithm has to cope with a cluttered field of 'vision' due to chair and table
legs, waste paper baskets, etc. For each scan matching cycle 5 reference graphs with the
highest qm-values were checked for correspondences.

All scan matches were global, i.e. no a priori available position information was used
to reduce search space. 

In Fig. 5, position hypotheses generated from APR's matching results (only matches
with highest evaluation rating em) are marked by triangles. Correct hypotheses are colored
gray, wrong estimates are colored black. A line between gray triangles indicates a track
section without matching result, i.e. at these positions the evaluation value em was below a
certain threshold. In total, 606 correct global position estimates and 1 wrong estimate
were generated, which shows a high hit/error ratio. Average scan processing time includ-

Fig. 5: Global scan matching results. Correct matches are indicated by gray triangles, false by black triangles.



ing all preprocessing steps was below 25 msec with a maximum of 43 msec per cycle on a
233 MHz Pentium PC.

If only the reference scan with the highest qm-value is processed, the number of correct
matches decreases to 366 with no false matching. If all reference scans are checked in
each cycle, 819 correct and 10 false matchings are produced with a still acceptable com-
puting time of 72 msec (avg.) and 142 msec (max.).

Please note, that the procedure of transforming local alignment results into a global co-
ordinate frame, corresponds to global self-localization in a metric navigation scheme. At
the same time, APR performs well in identifying the topologically correct reference
scans.

The algorithm handles environmental ambiguities by providing an a priori determined
number of different, reasonably quantified hypotheses. This is especially of interest for
probabilistic self-localization techniques like Markov approaches. 

APR's matching precision can be neatly controlled by the choice of the evaluation
function and the em-threshold, since these settings are used to determine the validity of a
scan match. However, APR's primary goal is to find a robot's global position while the ac-
curacy of this estimate is secondary, only.

Consequently, we don't argue for using APR as a standalone technique in applications
with high-precision requirements, but as a method to ensure localization robustness. We
are convinced that an autonomous service robot needs to be equipped with such global lo-
calization capabilities for reliable long-term operation.
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