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ABSTRACT

Self-localization as precondition for goal-oriented be-
havior is a fundamental property an autonomous mobile
robot needs to be equipped with. This paper addresses
the self-localization problem from a pragmatical point
of view since it argues for using passive artificial land-
marks in order to support mobile robot localization in
indoor environments. The idea is to further improve al-
ready existing localization capabilities by providing rel-
evant environmental spots with semantic information. In
order to facilitate the detection of these landmarks the
employment of bar codes is proposed. Experimental re-
sults concerning the detection and identification of bar
code labels by means of vision are presented.

1 INTRODUCTION

"Where am I?" is the central question in mobile robot
navigation [2]. Robust and reliable self-localization is of
vital importance for an autonomous mobile robot be-
cause the ability to constantly monitor the own position
in an unpredictable, unstructured, and dynamic environ-
ment is the essential prerequisite to build up and/or
maintain environmental maps consistently and to per-
form path planning. Thus, self-localization as precondi-
tion for goal-oriented behavior is a fundamental proper-
ty an autonomous mobile robot needs to be equipped
with.

Humans normally orient themselves by using natural
landmarks. However, in a regular and monotonous envi-
ronment we easily lose our bearings. It is for example
very likely that a person who gets lost in the desert will
walk in a circle trying to find a way out. Another exam-
ple is given by the fact that we have difficulties not to
get lost in a maze. Modern artificial landmarks are out-
doors e.g. sign posts or traffic signs. Indoors, for exam-

ple in large office buildings, each door is furnished with
a door plate and on every floor a directory can be found
identifying who is sitting in which office. This is indis-
pensable in many office buildings where all floors are
more or less looking the same.

This paper addresses the mobile robot self-localization
problem from a pragmatical point of view since it
argues for using passive artificial landmarks in order to
support mobile robot localization in indoor environ-
ments. The idea is to further improve already existing
localization capabilities by providing relevant environ-
mental spots with semantic information. In order to fa-
cilitate the detection of these landmarks the employment
of bar codes is proposed.

The rest of the paper is organized as follows. Section
two presents a rough overview of actual mobile robot
localization approaches while section three shortly in-
troduces our CAROL-Project as the general framework
of the idea presented here. Section four addresses bar
code basics while section five presents our implementa-
tion for visual bar code detection and recognition to-
gether with experimental results. Finally, section six of-
fers some concluding remarks and an outlook on future
work.

2 MOBILE ROBOT LOCALIZATION

Mobile robots usually perform self-localization by com-
bining position estimates obtained by odometry or iner-
tial navigation with external sensor data. Since the use
of active beacons or GPS is ruled out in the context of
many service applications, within this paper the term
external sensor refers to devices providing information
about structure or appearance of the robot's environment
(vision systems, laser scanners, sonars, etc.), only.

Position estimation algorithms which rely on at least the



rough correctness of the robot's last position in order to
calculate its actual position can be subsumed under the
term tracked localization techniques. This category of
algorithms proves to be quite efficient in static environ-
ments. Moreover, there is no need to handle environ-
mental ambiguities, e.g. different spots in the environ-
ment looking alike for the robot's external sensors, if
short processing cycles can be guaranteed. However,
tracked localization suffers from its inability to recover
from a significant position error and its inability to de-
termine the robot's initial location. This is a severe
handicap for a mobile robot in a dynamic and/or chang-
ing environment because the robot possibly runs into
situations which prevent it to recognize the formerly
well-known environment over a certain driving dis-
tance, accumulating a non-recoverable position error,
meanwhile. An example for such a situation is the 'kid-
napped robot' problem where a robot gets stuck in a
crowd of people chasing the robot around. After the
crowd has faded away, the robot has no chance to relia-
bly recover from its position deviation. A tracked locali-
zation algorithm was for example implemented on our
mobile research platform MOBOT-1V [4].

Thus, in order to obtain robust and reliable position esti-
mation capabilities global localization techniques are
required. One possible way to perform global localiza-
tion is on principle given by combining a tracked locali-
zation technique with a mechanism to reliably deter-
mine the robot's real position from time to time, e.g. by
identifying globally unique landmarks. Another possi-
bility is to permanently create, verify, and accept or re-
ject different hypotheses of the robot's actual position
based on environmental features which are extracted
from external sensor data. Environmental features can
be both, natural and artificial landmarks. In [1], Burgard
et. al. present a Markov-based approach for active glo-
bal localization. Another vision-based localization ap-
proach is presented by von Wichert in [3].

Let us now consider an autonomous mobile robot with
basic localization capabilities performing e.g. transpor-
tation services in an office building. If this environment
"office building" is impoverished as far as natural land-
marks are concerned, the necessity for artificial land-
marks becomes apparent. In an environment where hu-
mans have problems not to lose their bearings we
should not expect from an autonomous mobile robot
with its limited sensory and computational capabilities
not to do the same.

Following this discussion, we argue for the use of pas-
sive artificial landmarks to support and facilitate mobile
robot localization in indoor environments. The idea is to
furnish relevant environmental spots such as doors,
stairs, etc. with labels providing the robot with semantic
information about local environmental features. If each
label represents e.g. an individual, globally unique key,

Fig. 1: Mobile experimental robot Phoenix

its detection removes all doubts about the robot's actual
position. In principle, one could think of reading door
plates (which are present anyway) with conventional al-
gorithms for optical character recognition (OCR). How-
ever, there are a number of disadvantages coming along
with these items so that we propose the use of bar code
labels, instead. First of all, a door plate provides its in-
formation using alphanumeric symbols which are easily
detectable and readable for humans but not necessarily
for machines. Hence, a machine vision system may
have problems to detect relevant alphanumeric informa-
tion e.g. in an office building where posters and plac-
ards with alphanumeric symbols are the rule and not the
exception. In contrast, bar codes are specifically de-
signed to be read by machines. Moreover, since redun-
dancy is an inherent property of bar codes, a label can
be detected and read even if its full height is not entirely
visible for the sensor. This is certainly not generally true
for a string of alphanumeric symbols. Using bar codes
offers the additional advantage of altering the bar code
scheme depending on the application. One could e.g.
think of a mobile service robot using one bar code
scheme to identify different rooms in a warehouse while
another scheme is used to identify different products.

3 THE CAROL-PROJECT

The work presented in this paper is one of the current
activities within the scope of our CAROL-project.
CAROL (Camera based Adaptive RObot navigation &
Learning) generally aims at improving flexibility and



fault tolerance of mobile robot applications by develop-
ing adaptive learning techniques. Among others, one
central topic is to find answers to the question of how to
solve the global localization problem discussed in the
previous section. Current research work includes e.g.
unsupervised learning algorithms for classification and
interpretation of visual information and global localiza-
tion algorithms based on the fusion of laserscans and
visual data. Other research topics include sensor data
processing, control architectures, behaviour-based ap-
proaches and life-long learning. Fig. 1 shows our new
mobile robot Phoenix which serves as host for our ex-
periments. Phoenix is a three-wheeled vehicle with a
differential drive. The robot's current sensor configura-
tion includes a video camera on a pan/tilt-unit, a sonar
sensor system, and a Sick LMS laserscanner. Addtional-
ly, Phoenix will be equipped with infrared, sonar, and
tactile sensors. The final control structure consists of
two standard PC's and a laptop PC running the realtime
OS QNX. A wireless ethernet links the robot to the
team's workstation domain.

4 BAR CODES

Bar codes are nowadays frequently used in almost all
industrial branches whenever an information needs to be
read automatically. The great variety of applications led
to the existence of approximately 200 different codes
which are altogether subsumed under the term bar
code. Usually, the term symbology denotes a particular
bar code scheme, while the term symbol refers to the
bar code label itself [6]. A good example showing that
bar codes became a part of everyone's daily life is their
use in supermarkets. In Europe, for instance, the Euro-
pean Article Numbering (EAN) system is used in order
to label consumer goods. Fig. 2a shows an example of
an EAN-13 symbol [7].

Bar codes encode information along one dimension with
intervals of alternating diffuse reflectivity. The intervals
are actually stored as rectangles whose vertical height
carries no information but facilitates the scanning pro-
cess. The term bars denotes the rectangles with the
foreground color while the term spaces denotes the in-
tervals with the background color between the bars.
Usually, the foreground color is black and the back-
ground color is white. Both, bars and spaces are often
denoted with the term elements.

Basically, we distinguish between two classes of sym-
bologies: delta codes and width codes. Delta codes
subdivide the available interval of a symbol into areas
of the same size which are called modules. Each mod-
ule is assigned a bit. Modules with 1's are painted in
foreground color and form the bars, while modules with
0's form the spaces. Please note, that a single bar or
space may contain many modules. The EAN-13 code
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Fig. 2: Example of an EAN-13 bar code label
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Fig. 3: Examples of Code 39 symbols

mentioned above (Fig.2a) is an example for a delta
code. Width codes assign each bit either to a bar or to a
space. Whether a bar/space represents a '1' or a '0' de-
pends on its width: Wide elements represent the high
bits while narrow elements represent the low bits. Usu-
ally, a wide element has twice the width of a narrow
element.

Generally, delta codes have the advantage of providing
a higher information density. However, in comparison
to width codes they are less fault tolerant. Some width
codes are called self-checking because they offer the
opportunity to immediately detect single errors.

An example for a width code is Code 39 which was
used to perform the experiments presented here. Code
39 has a total of nine elements per code word, five of
which are bars with four spaces in between. Moreover,
three of the nine elements are wide elements. This is
where the name comes from. In total, the code can gen-
erate 84 individual code words of which, however, only
44 are used for representing the 10 digits, 26 letters, and
8 special symbols (hyphen, period, space, asterisk (*),
$./,+, and %). Please note, that the asterisk is used as the
start and stop code word of a symbol, only. The patterns
for both, the bars and the spaces have been chosen such
that changing a single bit in either of them results in an
illegal code word. The fact that bars always have an



even number of wide elements while spaces always
have an odd number allows to immediately detect single
errors. Thus, Code 39 is a self-checking code. Code 39
offers the option to include a checksum. If this option
is used the checksum is encoded by the penultimate
code word. Fig. 3a shows the principal structure of a
Code 39 symbol with four code words, while Fig. 3b
shows a Code 39 symbol with 10 code words, represent-
ing the string 'BARCODEL".

Barcodes are read by using specific optical scanning de-
vices. These are usually either hand-held or stationary
laser scanners. Hand-held scanners are used in such a
manner that a human operator searches the bar code la-
bel and brings the scanner manually in a position from
where the data can be read. In order to prevent misread-
ings, this position is ideally right in front of the bar code
label at a distance which ensures that the symbol is visi-
ble for the scanner, only. If the symbol's surroundings
are partially visible for the scanner, misreadings may
occur whenever a pattern looking alike a symbol is de-
tected. If this happens, the operator has to diminish the
distance in order to read the symbol. Hand-held laser
scanners are nowadays common at cash registers in su-
permarkets. Stationary scanners generally share the
common problem that they cover a wider detection area
so that the bar code label to be read is one pattern
among many others. Consequently, these devices must
be able to identify the relevant information by filtering
the input data stream. Besides their use in supermarkets
stationary scanners are often found in industrial envi-
ronments e.g. to gather information about items passing
on a conveyor belt.

[6] provides a good introduction into the fundamentals
of bar code information theory while a comprehensive
description may be found in [5].

S VISUAL BAR CODE RECOGNITION
AND EXPERIMENTAL RESULTS

Our algorithm for visual bar code recognition is current-
ly based on gray scale images provided by the robot's on
board video camera. On principle, the algorithm scans
the image matrix row by row in order to find Code 39
symbols. Since every bar code label starts per definition
with a starting zone, the algorithm searches for a candi-
date starting zone, first. If one is found, the algorithm
checks whether the subsequent code word is an asterisk.
Please recall, that this is the start code word of a Code
39 symbol. In case no asterisk is found, the algorithm
continues searching for a starting zone until either an-
other starting zone is found or the last pixel of the image
has been processed. If, however, an asterisk is found,
the algorithm proceeds by reading the remaining code
words of the symbol. Obviously, the code word encod-
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Fig. 4: Rotated Code 39 code words
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Fig. 5: Examples of quantization errors

ing the checksum can not be identified until the stop
code word has been read. The symbol is considered to
be syntactically correct if the checksum can be verified.

Reading the code words of a symbol implies three tests
to be performed consecutively for each code word. First
of all, it is necessary to check whether or not the speci-
fied number of bars is correct. With Code 39, five bars
need to be read. Next, there has to be verified whether
or not the width of the elements is aligned with the
specification, which defines that exactly three elements
must be twice as wide as the others. Moreover, at least
one of these wide elements must be a bar and at least
one of them must be a space. The algorithm finally ac-
cepts the code word, if it meets the symbology's specifi-
cation.

Since the video camera is mounted on a mobile robot,
the algorithm is faced with a couple of imponderabili-
ties which eventually prevent a symbol from being read.
The bar code label may for example be soiled or dam-
aged or parts of it may be hidden by another object.
Please note, that the latter is a problem only, if not the
full width of the symbol is visible for the camera. An-
other problem may arise when the symbol has been ro-
tated for some reason. If this is the case, it depends on
the angle of rotation whether the symbol can be read or
not. Fig. 4 examplifies these circumstances. Fig. 4a
shows a code word which has been rotated by an angle
a with respect to the baseline of the image. This code
word can be read correctly because the scanline, which
is parallel to the image's baseline, intersects both, the
code word's left-hand and right-hand side, respectively.
Fig. 4b shows the same code word, but rotated by the
angle oy (0 > aq). Since the scanline intersects the



code word's top side it is illegible. However, if this sym-
bol's height is increased the symbol becomes readable
again (Fig. 4c). This example demonstrates that the
height of a code word bears redundant information and
enhances the readability of a symbol significantly.

Let us now consider an arbitrary door in the middle of a
hallway which has been furnished with a bar code label
additionally to its door plate. While the robot is ap-
proaching the door, the label will appear perspectively
distorted in the image which aggravates the symbol's
recognition. Please note, that this is the normal case and
not the exception. Here, the readability of the symbol
depends on its size, the viewing angle, the distance be-
tween the label and the camera, and some camera pa-
rameters such as focus and focal length. Additionally,
the quantization as part of the image processing has an
impact on the readability of a bar code label. One prob-
lem arising here is that high-contrast edges in the origi-
nal image normally are converted into medium gray
scale values. This effect is shown in Fig. 5a. Pixel errors
caused by the quantization process are another problem
which may affect the readability of a bar code label.
Fig. 5b examplifies these circumstances. Nevertheless,
since the height of a label carries redundant information,
this problem is not critical in so far as it is likely that the
symbol will be encoded while one of the subsequent
rows is scanned.

Besides this, the readability of a bar code label is affect-
ed by the lighting conditions, since both, brightness and
contrast of an image depend on the ambient light. Seen
from the perspective of our algorithm, an ideal image
has black bars with sharp outlines against a white back-
ground. However, this ideal will almost never be
reached. Thus, in order to become independent from the
lighting conditions, i.e. to obtain information about the
brightness of an image, the algorithm computes the
mean O of the gray scale values of all pixels, first. O is
used as a threshold in the sense that the algorithm sub-
sequently considers a pixel to be bright if its gray scale
value exceeds U, and black, otherwise.

The fact that it is for any given image a priori unknown
whether or not it contains a bar code label offers on
principle two contrary strategies of how to perform the
search. The first strategy tries to analyse an image as
good as possible by alternately searching and filtering
the image. This process is continued until either a bar
code label has been found or the process exceeds a giv-
en time limit. Please note, that depending on the proper-
ties of a particular environment this strategy is likely to
find a bar code label, even if there is none. Let us for
example assume that a book shelf which is character-
ized by numerous vertical edges is visible in the image.
Then, the repeated search-and-filter process will prob-
ably extract patterns resembling valid symbols. In con-
trast to this approach, the second strategy tries to mini-

Fig. 6: This Code 39 symbol was not readable.

b)

Fig. 7: Examples of a Code 39 symbol consisting of 4 co-
de words which could be identified (String: *c2+).
In b), the label is only partially visible.



mize the computational effort per image by simply as-
suming that if an existing bar code label is not recog-
nized in an image, it will be found in one of the follow-
ing images provided the robot is approaching the label.
Hence, no additional and time consuming filter mecha-
nisms need to be involved. The current implementation
of our algorithm applies this strategy.

At this point, the question needs to be answered which
kind of information should be stored on a bar code la-
bel. Certainly, this depends on the application. Howev-
er, two principal possibilities can be identified. Con-
cerning the first of them, all information is stored on the
bar code label. In the case of Code 39, this leads to
comparatively wide symbols which is a problem, if the
physical dimensions of the labels are limited by an ap-
plication. This is for instance the case in the door-exam-
ple mentioned earlier. Our approach utilizes the second
possibility. Here, the label stores a code string, only,
which must be unique within the robot's environment.
This string is used as key for accessing a data base
where all relevant information is stored. This informa-
tion helps to answer the question "Where am 1?" if it is
associated with a global map of the robot's environment.

The figures 6-8 present experimental results. Fig. 6
shows a bar code label which could not be identified by
our algorithm. In contrast, the symbol presented in Fig.
7a could be identified as well as the only partially visi-
ble symbol of Fig. 7b. Fig. 8 presents identification re-
sults of a perspectively distorted bar code label consi-
sting of 10 code words.

6 CONCLUSIONS

This paper has addressed the self-localization problem
which is of central significance for the implementation
of autonomous mobile service robots. If the research
community wants their mobile robots to leave the labs
in order to become really useful in real-world applica-
tions under real-world conditions, robust and reliable
solutions for this problem need to be found. Moreover,
if the mobile robots are intended to leave the labs in the
not too distant future the required solutions need to be
pragmatic.

Against this background the paper presented a pragma-
tic idea which utilizes a camera-based bar code recogni-
tion technique in order to support mobile robot localiza-
tion in indoor environments. When reading a bar code
label the robot is provided with semantic information
about the label's local environment. If each label is
unique within the environment this immediately re-
moves all doubts about the robot's position. This is es-
pecially helpful in environments which are impover-
ished in the sense that unique natural landmarks are
lacking. In such environments, humans utilize artificial
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Fig. 8: Screen Dump showing a perspectively distorted
Code 39 symbol which could be identified. The
symbol consists of 10 code words encoding the
string *RAUM413B*

landmarks, e.g. door plates, etc., too. In this context, the
use of bar codes has advantages over conventional algo-
rithms for optical character recognition. One of these
advantages is their inherent redundancy. Another one is
given by the fact, that they are easier to be detected in
an image than alphanumeric labels.

An algorithm which detects and reads Code 39 bar code
symbols in video images has been presented together
with experimental results.
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