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Abstract--Concerning the robustness of mobile robot navi-
gation, global self-localization is a key feature for many
service applications. In this paper we describe an efficient
Bayesian approach for hybrid topological/metric naviga-
tion, which is designed to exploit information from multiple
sources of sensor data. Experiments with a combination of
odometry/laserscans/computer vision show the system’s
ability to generate initial position hypotheses, to cope with
environmental ambiguities and to recover from severe po-
sition errors.

Index Terms--localization, Bayes rule, navigation, mobile
robots, probabilistic reasoning

I INTRODUCTION

In the development of new application fields for mobile
service robots, robustness of self-localization is of vital
importance. Operation conditions in the service domain
differ decisively from those in industrial applications,
where target environments typically have a predictable
dynamic component and usually offer the opportunity to
install guidance support (active beacons, induction lines,
etc.). Instead, service robots have to deal with populated,
unprepared, possibly mutable and generally unpredicta-
ble environments, requiring a higher degree of flexibility
and error recovery capabilities.
Tracked self-localization techniques (e. g. [8], [9], [10]),
which are used in state-of-the-art developments, provide
high accuracy but insufficient error recovery properties
in highly dynamic environments. Since they are de-
signed to optimize position estimates within a limited
tolerance, they are casually unable to recover from errors
accumulated in areas which are - at least temporarily -
unrecognizable. Especially, tracked self-localization
techniques are inadequate to solve the so-called boot-
strap-problem, i. e. the generation of initial position hy-
potheses.
In order to overcome these deficiencies, a new class of
global localization techniques have been developed in
recent years (e. g. [1], [2], [3], [4], [7]). By any means,
these approaches permanently create and observe multi-
ple position hypotheses and are thus able to a) solve the
bootstrap-problem and b) recover from arbitrary position
errors - as long as the target area is not completely sym-

metrical and unique environmental features can be de-
tected to resolve ambiguities. However, the price for this
increase in robustness is typically a loss of accuracy.
Some of these techniques are purely topological, i. e. the
target environment is discretized into few characteristic
places.
The approach presented in this paper has been developed
in the CAROL (Camera Based Adaptive Robot Naviga-
tion and Learning) research project and is an extension
of the global localization frame introduced in [7].
The rest of the paper is organized as follows: section 2
addresses the environment representation, while section
3 shortly introduces the data sources. The self-localiza-
tion algorithm is treated in section 4, and experimental
results are presented in section 5. Section 6 offers some
concluding remarks.

II WORLD MODEL

Basically, we distinguish between two different types of
environment representations for navigation purposes:
metric and topological world models [14].
Due to their easy implementation and efficient handling,
metric representations (two- or three-dimensional maps
of environment features with a unique coordinate sys-
tem) are an obvious choice when ranging devices like la-
serscanners or ultrasonic sensors are used. Main
problems are difficulties to integrate non-metric infor-
mation and to guarantee consistent map building by the
assembly of sensor data. The latter problem is topic of
intensive research (e. g. [11], [12], [13]).
Topological world models represent the environment as
graphs of nodes (distinctive places) and connecting edg-
es (pathways). Advantages of topological world models
compared to metric ones are:
• Only topological, not precise metric correctness has

to be achieved during map building.
• Path planning is reduced to direct graph search.
• Sensor data is handled as attributes to nodes and/or

edges, which simplifies the fusion of information
from different sources and the integration of non-
metric sensor data.

A basic disadvantage of topological world models is the
poor environment resolution, which is insufficient for
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any other purpose than navigating from one region to an-
other. Thus, real implementations often realize mixed ar-
chitectures, like the metric world model in [10], which is
extended by a topological graph to facilitate path plan-
ning or the topological model in [3], which has been aug-
mented with metric information for localization
purposes.
In contrast to their industrial counterparts, service robots
usually don’t require high accuracy in absolute coordi-
nates of a unique coordinate system (e.g. for precise
track following on defined pathways, movement coordi-
nation of multiple robots, etc.) but rather local precision
(e.g. for room cleaning, docking, etc.). Consequently, we
argue to benefit from the advantages of both, metric and
topological models, by using a topological graph as the
backbone of environment representation, and at the same
time establishing local metric coordinate systems in the
nodes’ regions (Fig. 1). This preserves the advantages of
local precision and simple data fusion, but eliminates the
expensive and difficult necessity to establish global map
consistency.
In our scheme, each node stores the approximate posi-
tions of its nearest topological neighbours with respect to
its own local coordinate system. That reveals our world
model as a true hybrid, since maximum accuracy of
neighbour estimate is equivalent to the existence of a
correct metric world model, while minimum precision
stands for pure topological representation.
In practice, instead of managing many different coordi-
nate systems we’re using only one global coordinate sys-
tem, where approximate correctness is only expected for
immediate topological neighbours. Small errors between
neighbours are allowed and the map may overlap - as
long as topologically remote regions are affected, only.
However, when closing big cycles during map building,
large errors between the latest connected nodes are inev-
itable. In this case, corrective transformation parameters
are stored in the corresponding graph edges.
In topological maps, sensor data usually is stored in the
nodes’ data structures. Due to the exclusive use of direct-
ed sensors in the CAROL project (laserscanner and cam-

era), we chose to place sensor data bidirectionally in the
arcs’ ends, instead. Thus, the robot ’knows’ a node’s ap-
pearance for each registered arc in both directions of that
particular pathway.

III SENSORS

Besides odometry, two main sources of localization in-
formation were used to achieve the experimental results
presented in section 5:

A. Laserscanner

In the automated map building phase, reference scans
are inserted into the topological graph. During self-local-
ization, the feature-based APR (Anchor Point Relation
Matching) algorithm [6] tries to find matches in this ref-
erence set for each new laserscan. Result of each match-
ing cycle is a certain number of tripels ,
where idi is the identifier of a similar reference scan, and

a vector of translational and rotational pa-
rameters to align reference scan idi with the current la-
serscan s. A quality measure for the alignment of idi and
s is given by qi. An APR matching cycle thus produces a
multitude of weighted matching hypotheses for each new
laserscan. Alignment precision lies within few centime-
ters.

B. Computer Vision

In order to recognize robot positions by means of com-
puter vision, we apply a modified implementation of the
selforganizing approach introduced in [5]. In this tech-
nique, two hierarchical neural nets are trained with typi-
cal feature-filtered colour images of the target
environment. During this offline training, the first neural
net creates classes of representative feature combina-
tions, while the second net, referring to these pixel class-
es, separates the image input space into classes of similar
scenes. Thus, the neural nets autonomously learn the
specifics of the target environment. Classification results
are generally stable concerning moderate rotation and
translation. For visual self-localization, the current im-
age scene classes are compared with those stored in the
topological graph.

IV SELF-LOCALIZATION

In classic tracked localization techniques (e. g. [8], [9],
[10]) only one robot position estimate is observed and
new sensor data is used to proceed and optimize (e. g. by
Kalman filters) the position belief in space. However,
since being unimodal, these techniques are able to com-
pensate limited position errors, only. As mentioned in
section 1, unimodal tracked localization provides high
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precision but insufficient error recovery from severe po-
sition errors. However, these errors have to be expected
in dynamic environments. Furthermore, tracked locali-
zation is only applicable for metric world models and the
starting position has to be provided.
In contrast, global self-localization techniques have to
be multimodal, i. e. the ability to track multiple hypothe-
ses in parallel. A common approach (e. g. in [1], [3], [4],
[7]) is to model position belief as probability distribution
over the target environment. Bayes rule is used to fuse
current sensor information and last position belief in up-
date cycles.

A. Position Hypotheses

The decision how to discretize the position probability
distribution is essentially influenced by the underlying
world model. In topological representations (e. g. [3],
[4]) probability values are usually computed for transi-
tions between nodes, rather than for the nodes them-
selves. This allows the consideration of the robot’s
rough orientation. In the metric Markov approach in [1]
the robot’s three dimensional configuration space (with
dimensions x, y and orientation φ with respect to the glo-
bal coordinate system) is discretized into fine-grain 3D-
grids. In the update cycles the probability value for each
cube is computed depending on new sensor data. Due to
its large computational expense, this method has been
superseded by a more efficient sample-based method
[2].
For the hybrid world model described in section 2, the
first discretization scheme doesn’t provide the desired
resolution, while the second is applicable to consistent
metric representations, only. The discretization scheme
we propose, analogous to the existence of local coordi-
nate systems, presumes local configuration spaces
which are united to a non-consistent super space.
Position beliefs in the topological graph at time t are rep-
resented as set of explicit position hypotheses PHt. A po-
sition hypothesis discretizes a particular position
estimate within a certain tolerance, moves in super space
according to the robot’s relative manoeuvres, changes its
probability and shape due to new sensor data, and possi-
bly ’dies’ when never confirmed. Formally, the set of ex-
plicit position hypotheses is defined as:

with . A
position hypothesis is valid in the context of node
ni, referring to the fact that sensor data from this node
has been used to create or confirm . In ni’s geomet-
rical context, the hypothesis’ center of gravity is given
by vector , while is the description of
an uncertainty perimeter around . The probability of
the robot position actually being inside the uncertainty
region is reflected by value . For matters of simplicity
and with respect to the perimeters used in the experi-
ments of section 5, we assume as a vector (r, ∆), r be-

ing a radius of translational tolerance and ∆ a tolerance
angle (Fig. 2). Consequently, the uncertainty region
around is modelled as a cylinder in the local configu-
ration space of node ni=Nm.
Provided that the uncertainty regions in PHt don’t inter-
sect in the super space, the probability values of the po-
sition hypotheses, together with the likelihood of ’rest’
hypothesis ht,0 have to sum up to 1. This special hypoth-
esis represents the probability that the actual robot posi-
tion is not in one of the explicit hypotheses.

B. Update

We distinguish between three types of sources for local-
ization information: tracking, primary and validation
data sources or sensors. (’Sensor’ is understood in the
meaning of a logical rather than a physical sensor.) New
sensor data of any kind is processed on availability.
Tracking data sources only provide relative movement
information, e. g. from odometry, inertial systems,
tracked self-localization, or a combination of these. Ac-
cording to the indicated relative movement, the -vec-
tors of all ht,i, i>0 are modified to reflect the estimated
position change. Since tracking sources don’t provide
any useful information to solve the global localization
problem, the probability values of the ht,i are not affect-
ed. However, because tracking data is generally errone-
ous, the growing position uncertainty is reflected by
expanding the uncertainty regions .
Primary sources provide information which is necessary
to generate new or to verify old position hypotheses. We
assume that the processing of a new sensor observation
o results in a set of weighted position alternatives

, where is a possi-
ble robot position vector in the local coordinate system
of node nj. The value is a measure for the conditional
probability of observing o when being at posi-
tion .
A first step checks if alternative aj confirms an existing
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position hypothesis, i. e. if lies in one of the ’s un-
certainty regions. Since the robot might currently be
heading out of one node context into another, and
the confirming aj don’t nessecarily need to be in the
same geometrical node context. Consequently, the com-
parison of these two positions has to take place in the su-
per space and the ’s uncertainty perimeter needs
to cover both, the aj’s sensor errors and the expected
map building error for two neighbouring nodes.
A confirmed position hypothesis takes over node
context nj from the validating alternative aj, merges its
center position with and resets uncertainty perim-
eter to an appropriate size. If position alternative aj
doesn’t confirm an existing position hypothesis, a new
hypothesis is created from the values of aj, initial-
izing uncertainty region and probability with de-
fault values.
The new probability distribution following the observa-
tion of o is computed by updating all using Bayes
rule:

The probability prior to observing o is given by
, and is - for new and confirmed position

hypotheses - provided by the aj’s -value. For uncon-
firmed we assume a value for which is
smaller than the lowest -probability, instead. This
guarantees the reward of all confirmed position hypoth-
eses in relation to the unverified.
Since the denominator sum is obviously equal for all

, it is replaced by a normalization factor
which ensures that the whole distribution sums up to 1.
Thus, the formula can be simplified to:

At this point, the question is still open how to modify the
probability of ’rest’ hypothesis ht,0, which should reflect
the system’s „scepticism“ concerning the current explic-
it position hypotheses. In the ideal scenario, one single

is permanently confirmed and consequently domi-
nates the probabilities of other position hypotheses by
some orders of magnitude. Due to ambiguities in the en-
vironment, it might occur that more than one position
hypothesis achieves high probability values until the de-
tection of unique features. In both cases the real position
should be represented in one of the explicit hypotheses
and should be low. Worst case is the robot op-
erating in an unrecognizable environment part, either
causing the sensors to stop producing localization data or
causing them to ’hallucinate’, i. e. to permanently create
new, invalid hypotheses. Consequently, we propose to
periodically check for the occurrence of hypothesis con-

firmations. If no hypothesis has been confirmed by pri-
mary or validation sources in the last period, ht,0 is
rewarded, or penalized in the opposite case.
Validation sources provide useful information to con-
firm existing position hypotheses, but are inadequate to
create new ones by themselves. This is typically due to
three main reasons:
• Sensor resolution is too low. (E. g. a logical ’door’

sensor might be useful to confirm existing position
hypotheses. However, it seems unfavourable to
apply the sensor for hypothesis creation in environ-
ments with many doors.)

• Mapping data for a particular sensor hasn’t been col-
lected area-wide and large parts of the environment
are not represented in the graph’s data set.

• Data processing for a logical sensor is too slow to
initiate a global correspondence search. Thus, search
space has to be reduced to the hypotheses’ uncer-
tainty regions (e. g. for iterative algorithms like [15],
which require good starting points).

Confirmations from validation sources are processed ex-
actly like those of primary sources.

V EXPERIMENTAL RESULTS

In the first experimental setup, odometry serves as track-
ing sensor and the APR algorithm as sole primary
source. In Fig. 3 the environment structure (size approx.
50x70 meters) is indicated by the stored laserscans.
Please note, that no scans are available in the middle of
two corridors. In these regions all doors had been closed
and since no APR-features were detectable, no reference
scans have been inserted into the topological graph.
Each triangle indicates the position of the currently best
rated during a test course. Fig. 4(a) shows the prob-
ability trend of the best rated hypothesis together with
the likelihood of ht,0 on a track section between starting
position and milestone 4. The reward of ht,0 in the ab-
sence of confirmations is chosen unpragmatically high,
i. e. the system is quickly forced back into uncertainty af-
ter only few periods of missing validations.
Starting with the first laserscan, the correct position hy-
pothesis achieves the highest probability by successive
confirmations, leading to the peak at milestone 1. After-
wards, the robot heads into a long, featureless corridor,
causing a dramatic probability decrease to near-zero.
Since none of the existing position hypotheses is con-
firmed in the corridor, the probability proportions are
sustained and the correct hypothesis remains best rated.
At milestone 2, the probability values have decreased to
such a low level, that even some confirmations in this re-
gion can’t produce a visible peak. Thus, after covering
the same distance back through the corridor to milestone
3, but starting with a much smaller λ-value than on the
way forth, the hypothesis’ probability is virtually equal
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Figure 3. Environment structure (approx. 50x70 m) and test course
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’residual’ or ’background’ likelihood. Unfortunately, by
reaching a real position near milestone 3 the first new
APR results favour another hypothesis, temporarily
causing a switch of the best rated position estimate to a
position near milestone 5. However, these few confirma-
tions of a wrong position hypothesis are surmounted af-
ter a few seconds. Beyond milestone 4 the correct
hypothesis’ probability stabilizes at higher values and
remains as the best rated until reaching the final position.
A less excessive reward of ht,0 averts the position track-
ing discontinuity easily, but this example shows the sys-
tem’s ability to provide bootstrap-information and to
recover from arbitrary position errors, even under the ap-
plication of extreme parameter settings.
The second experiment takes the same test course sensor
data and parameter settings, but additionally considers
visual information. Principally, the image classification
technique could also be used for the creation of position
hypotheses by searching the current image class in the
topological graph. However, since the nodes in the ex-
periment are up to 5 meters apart, the information densi-
ty of image classes is merely sufficient to serve as
validation source.
Fig. 4(b) shows the probability diagram between starting
position and milestone 4 with the integration of image
classification results. Although, due to the excessive
ht,0-reward, the correct estimate’s likelikood sometimes
drops down to near-zero, it never falls near residual
probability. Thus, confirmations of wrong position hy-
potheses are never able to threaten the correct hypothe-
sis’ domination, i. e. the erroneous hypothesis switch has
been avoided this time. Additionally, average ht,0-prob-
ability is reduced significantly over the whole course.

VI CONCLUSIONS

In this paper we have proposed a hybrid topological/met-
ric navigation architecture for mobile service robots,
which preserves the basic advantages of both world
models, e. g. local precision, simple map building and
path planning, etc. . Based on this architecture, we fur-
thermore presented a global self-localization technique,
which solves the bootstrap-problem and is able to recov-
er from arbitrary position errors, while at the same time
being open to the integration of arbitrary information
sources. Experiments with extreme parameter settings in
a partly monotonous environment have proven the meth-
od’s robustness.
In the senor domain, future work concerns the develop-
ment of additional validation and primary sources, espe-
cially in the challenging field of computer vision and
image understanding. Regarding map construction, the
currently used mapping procedure will be replaced by a
probabilistic approach inspired by [13].
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